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In a previous paper [J. Opt. Soc. Am. A 12, 1932 (1995)] we presented a method for phase recovery with the

transport-of-intensity equation by use of a series expansion.
lution of this equation, which allows recovery of the phase in the case of nonuniform illumination.

Here we develop a different method for the so-
Though

also based on the orthogonal series expansion, the new method does not require any separate boundary con-

ditions and can be more easily adjusted for apertures of various shapes.

The discussion is primarily for the

case of a circular aperture and Zernike polynomials, but we also outline the solution for a rectangular aperture

and Fourier harmonics.

The latter example may have some substantial advantages, given the availability of

the fast Fourier transform. © 1996 Optical Society of America.

1. INTRODUCTION

The problem of optical phase retrieval from intensity
measurements plays an important role in many fields of
physical research, e.g., optics, electron and x-ray
microscopy,’ crystallography,? diffraction tomography,?
and many others. In these disciplines phase recovery
can be used as an essential component of the imaging
technique and allows the acquisition of important addi-
tional information about the sample. Whereas intensity
contrast reflects primarily the distribution of the imagi-
nary part of the complex refraction index, the recon-
structed phase provides information about its real part.
More recently, phase retrieval has also become a major
part of various adaptive optical systems that are being de-
veloped in astronomy,® synchrotron x-ray optics,® and
ophthalmology.® Here the recovered aberrations of the
wave front are compensated with the help of a flexible
mirror, resulting in a significant improvement in the im-
aging quality of the optical system.

Existing noninterferometric methods of phase re-
trieval, which attempt to recover the phase of an electro-
magnetic wave on the basis of direct measurements of its
intensity, can be subdivided into two major categories ac-
cording to the conditions of intensity measurements. In
the first category, the intensity of a wave field is mea-
sured in the far (Fraunhofer) zone, so the complex ampli-
tude of the scalar wave can be considered as a Fourier
transform of the amplitude distribution in the object
plane. If the latter distribution is bounded by a finite ap-
erture (has a finite support), then its Fourier transform is
an analytic function whose phase and intensity depend on
each other.” This dependence can be used for recovery of
the phase from intensity data. In the second category,
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intensity is measured in the Fresnel zone at two adjacent
planes orthogonal to the optical axis (Fig. 1). Then the
phase on the first of the planes is recovered by use of the
information about the evolution of the intensity
distribution.? This approach is based on the transport-
of-intensity equation (TIE) formalism. It was originally
proposed by Teague®® and later developed by Roddier'®!!
under the name of wave-front curvature sensing.!? This
approach is used in the present paper.

In a recent paper'® we proposed a new method for so-
lution of the TIE in which both the data and the solution
are expanded into a series of Zernike polynomials. Such
an approach has several important advantages. First,
the recovered phase is given in terms of classical Zernike
aberrations, which are convenient for many appli-
cations.*1®  Second, the decomposition of the TIE into
Zernike components reduces it to a relatively simple and
well-conditioned system of algebraic equations the solu-
tion of which are the Zernike coefficients of the phase.
We conducted a theoretical analysis of this algebraic sys-
tem and found exact relations between individual Zernike
aberrations and the evolution-of-intensity distribution in
the wave front of a paraxial wave. Furthermore, the re-
duction of the TIE to an algebraic system allows effective
methods for its analytical and numerical solution. In
Ref. 13 we derived analytical expressions and presented
numerical examples of the corresponding matrix and its
inverse. It is important to note that the elements of
these matrices do not depend on experimental data.

The results of Ref. 13 were obtained under two major
assumptions. First, the beam for which the phase is to
be reconstructed was required to have a circular cross sec-
tion; second, illumination was assumed to be uniform
within that cross section. These assumptions are often

© 1996 Optical Society of America
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Fig. 1. Phase retrieval can be performed by using the two in-
tensity measurements I(x, y,0) and I(x, y,56z) on adjacent
planes z = 0 and z = &8z orthogonal to the optical axis z.

\

used in adaptive optics.!” The first assumption, though

apparently limiting, is of a technical character. It relates
to the fact that the conventional Zernike polynomials are
defined in a circular region. The assumption of uniform
illumination is of more fundamental importance. It was
an essential part of the original wave-front curvature
sensing technique of Roddier.!®! However, in many
practically important problems in which phase recovery is
required, the intensity distribution is not uniform. The
new method allows us to remove both of the above as-
sumptions.

The main result of the present paper is a new method
for phase retrieval by the TIE, which can be used in the
case of nonuniform illumination. We show that this ap-
proach not only allows one to deal with nonuniform illu-
mination in a noniterative manner but also removes the
major difficulty of some of the previous variants of the
wave-front curvature sensing technique, namely, the ne-
cessity of distinguishing the boundary phase data from
the intensity derivative inside the aperture.!® We also
establish some important properties of the phase retrieval
matrix corresponding to our method. In particular, we
prove that this matrix is always invertible. These re-
sults provide the basis for the numerical implementation
of the method. Its good performance is confirmed by
computer simulations.

The outline of the paper is as follows. In Section 2 we
describe the main properties of the TIE in the case of non-
uniform intensity. We develop our method for phase re-
trieval by the TIE with use of Zernike polynomials in Sub-
section 3.A and Fourier harmonics in Subsection 3.B,
illustrate the analytical results with several examples in
Section 4 and summarize the main features of the method
in Section 5. In Appendix A we show how the technique
is simplified in the uniform intensity case.

2. TRANSPORT-OF-INTENSITY EQUATION
IN THE CASE OF NONUNIFORM
ILLUMINATION

In the paraxial (Fresnel) approximation with the optical
axis parallel to the z coordinate, the slowly varying com-
ponent u(r) = IY(r)explip(r)] of the scalar monochro-
matic wave exp(ikz)u(r) satisfies the paraxial equation

(2ikd, + Mu(x, y, z) = 0, (1)
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where r = (x, y, 2), d, = d/ldz, k = 2@w/\ is the wave
number, and A = V2 = .2 + ayz is the two-dimensional
Laplacian. If intensity is positive everywhere in some
area () of the plane z = z(, then, in O, Eq. (1) is equiva-
lent to the following pair of equations for the intensity
and phase®?:

2kd,e = — |Ve|? + D), (2)

kol

- V. {Ve), (3)

where V = (d,,d,) is the gradient operator in the
plane and D(I) = I"Y2A(I'?). Equation (3) is the TIE.
Teague®? was the first to suggest the use of the TIE for
retrieval of the phase ¢ in () if the distributions of inten-
sity and its z derivative are known there. Without loss of
generality we can always assume that the domain Q lies
in the plane z = 0.

If we consider () to be the image of a finite illuminated
aperture, then the intensity vanishes outside (). Note
that according to a well-known property of Eq. (1), the im-
age of a finite aperture cannot be finite; i.e., for an arbi-
trary large R points (x, y) exist such that x2 + y2 > R?
and I(x, y) > 0 (here and below we omit the coordinate z
from the list of arguments of functions if z = 0). How-
ever, it is reasonable to assume that if the illuminated ap-
erture in the object plane has a finite size, then intensity
values in the image plane will be negligible outside some
finite area ). Certainly, in general, the intensity may
also have zeros at some points inside (). At such points,
however, the TIE [Eq. (3)] is not valid, and phase may be-
come a multivalued function in Q.1® To avoid this sort of
complication we assume that () is a simply connected do-
main with smooth boundary I' = §() and that the inten-
sity I(x, y) = I(x, y, 0) is a smooth function such that

I(x,y) >0  inside Q, (4)

I(x,y)=0 outside () and on TI'. (5)

Thus to retrieve the phase ¢ we must solve Eq. (3) with
I(x,y) satisfying relations (4) and (5) in area ). Let us
consider the problem of the existence and uniqueness of
the solutions to the problem posed by relations (3)—(5).

We state that the solution to problem (3)—(5) is always
unique up to an arbitrary additive constant. Obviously,
if ¢ is a solution to problem (3)—(5), then ¢ + C is also a
solution for an arbitrary constant C. Let us prove that if
¢1 and ¢, are two solutions to problem (3)—(5), then
@9 = ¢ + C with some constant C. If ¢ = ¢9 — ¢q,
then

V- (IVe) =V -(IVey) =V - (IVey)

ko — kol = 0,

o
Il

- f f oV - (IVe)dxdy
Q

ffIWcﬂzdxdy - fl&&n?ods. (6)
Q r

Because ¢; and ¢, are the phases of the slowly varying
complex amplitude u(r), the product 124, ¢ is bounded:
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126, 5| < k. As intensity I(x, y) tends to zero, when
(x, y) tends to the boundary T, the product IV?% also
tends to zero at the boundary. Therefore the integral
over I' in Eq. (6) is equal to zero. Hence it follows from
Eq. (6) and relation (4) that Vo =0 in Q, i.e.,
¢ = constant.

We also state that for the phase solution to problem
(3)—(5) to exist, the following condition must hold:

f f g, Idxdy = 0. 7
Q

To prove Eq. (7) we multiply Eq. (3) by the constant func-
tion E(x, y) = 1 and integrate by parts over ():

f f ko, Idxdy f f Eko,Idxdy
QO [9)

= - ff EV - (IV)dxdy
Q

ff IVe - VEdxdy = 0.  (8)
Q

Equation (7) is a necessary condition for the solvability of
problem (3)—(5). This condition reflects the energy con-
servation law and can be used to check the consistency of
experimentally measured intensity data.

We must emphasize that despite its seeming simplicity,
problem (3)—(5) is a difficult one for mathematical
analysis.!® Serious complications arise from the degen-
eracy of the coefficient I(x, y) at the boundary. Note, for
example, that conventional partial differential equations
in a bounded domain usually require some boundary con-
ditions for the uniqueness of their solution. In contrast,
as we just proved, problem (3)—(5) has no more than one
solution (modulo constant phases) in the absence of any
classical boundary conditions on the phase solution.
This is a rather unusual situation from the point of view
of the theory of partial differential equations.

3. SOLUTION OF THE TRANSPORT-OF-
INTENSITY EQUATION WITH
NONUNIFORM INTENSITY

In this section we construct a solution to the TIE [Egs.
(3)=(5)] by the method of orthogonal expansions.2’
Rather than applying the method in its abstract form
within an area of an arbitrary shape, using some set of
basis functions, we consider a more specific situation of a
circular domain and Zernike polynomials. The general
ideas of this method can be easily transposed to domains
of a different shape with an appropriate orthonormal set
of basis functions. An example involving the rectangular
domain and Fourier harmonics is presented in Subsection
3.B.

A. Circular Domain and Zernike Polynomials

We do not reproduce here the definition and basic proper-
ties of the Zernike polynomials, which can be found in
many sources.* 16 We will use the definition and nota-
tion adopted in Ref. 13, which differ only slightly from

those introduced in Ref. 16.
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Let Q be a two-dimensional disk of radius R in the
plane z = 0 and let (r, 6) be the polar coordinates in ().
The Zernike polynomials Z;(r/R,0), 0=< r <R,
Jj=1,2,3,..., make up a complete orthonormal set in ()
with respect to the scalar product:

27 (R
(f, g) = R*2f f f(r,0)g(r,0)rdrds. 9)
0 0

Let us multiply TIE (3) by the Zernike polynomial
Z{(r/R,0) and integrate it over ()

27 (R
fszf f V- (IVe)Z;rdrde
0 0

27 (R
=R f f FZrdrde, (10)
0 0

where F' = kd,I(r,0). The right-hand side of Eq. (10) is
by definition the jth Zernike coefficient F; = (F, Z;) of
the function F. On the left-hand side of Eq. (10) we de-
compose ¢ into Zernike terms,

©

o(r,0) = >, ¢, Z(r/R,0) (11)
=
and integrate by parts, taking Eq. (5) into account. The
integral over the boundary I' disappears, and we obtain

* 27 (R
> @R f J INZ; - VZyrdrdo = F;.  (12)
i=1 0 0

Now it is convenient to introduce the matrix M = [M ;]
with elements

27 (R
M = f f 1(r,0)VZ:(r/R,6) - VZ,(r/R,0)rdrdo,
0 0

i,j=1,2,8,.... (13)

Using this definition we can rewrite Eq. (12) as a system
of algebraic equations for the unknown Zernike coeffi-
cients ¢; of the phase:

};Ml‘j%:RZFj, j=1,2,3,..., or Mg = R?F.

(14)

To retrieve the Zernike coefficients of the phase, it is nec-
essary to solve the algebraic system (14), i.e., to find the
inverse matrix ML Note that by definition
Z, = constant. Hence it follows from Eq. (13) that the
first row and the first column of [M;;] consist of zeros.
This fact has two consequences. First, a solution to Eq.
(14) may exist only if F; = 0. This is a manifestation of
the general solvability condition [Eq. (7)] of the TIE de-
rived in Section 2. Second, the first Zernike coefficient ¢;
cannot be found from Eq. (14). This is a manifestation of
another general property proved in the Section 2, which
states that the phase can be found from the TIE only up
to an arbitrary additive constant. Obviously, the solv-
ability of the TIE in this situation is equivalent to the in-
vertibility of matrix [M;;]. We consider the finite (trun-
cated) subsystems of Eq. (14) with i and j not exceeding
some integer N and prove that the matrices My,
= [M;jly),2 <i<N,2<j <N are invertible.
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For a given integer N and a function g(r,#) defined in
Q, let us denote by gy a finite Zernike expansion

g7, 0) = 2 2,Z;(r/R,6). (15)

Note that the sum in Eq. (15) starts from j = 2. The fol-
lowing equation is an (N — 1)-dimensional approxima-
tion of Eq. (14):

> Me;=RF;, j=2,...,N, or
i=2

= RZF(N>. (16)

Let us show that matrix My, is invertible for an arbi-
trary integer N. By definition,

2 2 Mi¢i¢; = E Z ch%f L IVZ; - VZ;rdrdo

j=2i=2 j=2i=2

Mn)ew)

Q

If M(N)(P(N) = 0 for some P(N) > then V(P(N) = 0 and hence
o) = 0, because ¢y is orthogonal to constants by defi-
nition (15). Thus we have proved that the null space of
matrix My, contains only the zero vector, which means
that My, is invertible.

Now we can solve Eq. (16):

N
=R?>, M;'F;, i=2,...,N, or
Jj=2
o) = R2M(_1\})F(N>- (18)

The convergence of the partial phase solutions ¢y is a
complex problem. Generally, the functions ¢, may not
converge in a pointwise metric; i.e., for a particular point
(r,§ in Q it may happen that the difference
le)(r,0) — ¢q(r,0)| becomes arbitrarily large when L
and N tend to infinity. The sequence ¢, may not con-
verge in the least-squares metric, either. This means
that problem (8)—(5) is ill-posed,?! which is a common
situation for inverse problems.?? The mathematical
theory of ill-posed problems is now well developed, and
different methods for constructing so-called regularized
solutions exist.2! In the case of orthogonal series expan-
sions the conventional recipe is to truncate the series at
some N that is “not too large.” More specifically, for a
given precision J of the right-hand-side function F' and &
of the intensity I(r,0), there exists an optimal number
Nopt = Nopt( 95 ,0p) such that the finite Zernike sum
PN, is the best possible approximation for the exact
solution ¢ among all ¢py. Furthermore, |¢(r,6)
_ ‘P<Napt>(r’ 0)| < e(5r,8p) in Q, and € tends to zero when
Sr and & tend to zero. Particular methods for the deter-
mination of the optimal truncation number N,,«(6x, 57) as
well as other regularization methods can be found in Ref.
21.

B. Rectangular Domain and Fourier Harmonics
Here we give a brief outline of the application of the
method developed in Subsection 3.A to the rectangular
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domain Q,; = (0, @) X (0, b) and the functions

Won(x, y) = exp(i27mmx/a)exp(i27ny/b). (19)

The Fourier harmonics W,,,, with integer m and n consti-
tute a complete orthonormal basis in Q,; with respect to
the standard scalar product

1 b (a
(f, 8)ab = a_bf f flx, y)g*(x, y)dxdy, (20)
0 0

where the asterisk denotes complex conjugation. Follow-
ing the scheme of Subsection 3.A, one can reduce TIE (3)
in Q,; to the system of algebraic equations for the un-
known Fourier coefficients of the phase:

2 <PijM
,J

v, =abF, ., (21)

where Pij = <‘P7Wij>ab and Fon = (Fann>ab are the

Fourier coefficients of the phase ¢ and intensity z deriva-
tive F = kd,I, respectively,

MY, = (2m*imbla + jnalb)l, i, _;, (22)

= (I,W,4)ap are the Fourier coefficients of the inten-

31ty distribution I(x, y) in Q,,. Note that [M¥ ] is a

rectangular matrix with indices m = 0, *1,..., =M,

n=0,*1,...,*N,i=0,*1,...,*I,j= O,il,...,

+J. Invertibility of the square matrix [M ¥, ,] with indices

i,m=0,*1,..., =M, Jj,n=0,%1,..., =N,

m2+n2>0 i2+;2>0 (23)
with arbitrary integers M and N can be verified exactly
as in Eq. (17). The Fourier coefficients of the phase can
be found by

¢y = abX, (MY, 17'F,,, (24)

with the range of indices defined in Eq. (23). Algebraic
system (24) can be further simplified by taking into ac-
count that both the phase ¢ and intensity z derivative
F = Fkd,I are real functions.

This approach may have some advantages over the
Zernike decomposition used in Subsection 3.A. First, the
availability of the fast Fourier transform will consider-
ably increase the speed of all calculations. Second, if an
object does not display any circular symmetry, it may be
better represented by a finite number of its Fourier com-
ponents than by the same number of Zernike components.
Third, some detectors (such as a CCD camera) naturally
have a rectangular geometry, and the transformations of
the measured intensity distributions into polar coordi-
nates suitable for the Zernike representation may intro-
duce additional errors in the reconstruction.

The above formulas take an especially simple form in
the case of uniform intensity such that I(x, y) = I in
Q,p and I(x, y) = 0 outside ,; . This simplification is
due to the fact that the Fourier harmonics W,,, are the
eigenfunctions of the Laplacian in the rectangle Q,; :
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MY, = (2m)2Iy(m?bla + n%alb)é,,;5,;, (25)

B (ab)?
~(2m)2(m2b? + n2ad),

@mn FWLI’L ’ (26)

where m =0,+1,...,*M, n=0,=*1,...,+*N, m?
+ n2> 0. Note that the last formula is clearly a stable
one, as the higher-order Fourier harmonics of the inten-
sity z derivative are divided by the increasing numbers
(m?b2% + n?a?). This technique of phase retrieval by the
Fourier expansion of the TIE will be discussed in detail in
the future.

4. NUMERICAL ASPECTS AND EXAMPLES
OF PHASE RETRIEVAL

In this section we discuss some scaling properties of the
new phase retrieval algorithm developed in the previous
sections and present initial results of its numerical test-
ing. These results demonstrate good accuracy and stabil-
ity of the proposed algorithm on simulated data with and
without noise. More comprehensive numerical tests as
well as the application of the method to experimental
data will be presented elsewhere.

The method for phase retrieval with the TIE that we
have developed here is described in essence by formula
(18) of Subsection 3.A. According to formula (18), to re-
trieve N — 1 Zernike coefficients ¢; of the phase with in-
dicesi = 2,..., N, one must calculate the (N — 1) X (N
— 1) matrix elements M;;, i,j = 2,..., N using Eq.
(13), invert matrix M(y), and multiply it by the vector
R?Fy = R®[F], j=2,..., N of the Zernike coeffi-
cients of the z derivative F' = kd,I.

It is apparent that the calculation of the matrix [M ;] is
the most computationally demanding among the opera-
tions needed for the retrieval of phase by our method.
However, with careful programming we found that we
were able to compute the 20 X 20 matrix My}, in approxi-
mately 40 s using an Intel-486DX2 66-MHz-based per-
sonal computer with the double integrals calculated over
a 128 X 128 grid.

If the intensity distribution I(r,#) in the plane z = 0
remains unchanged (though possibly nonuniform), then
there is no need to recalculate matrix M&\%. In such
cases the only computations necessary for phase retrieval
are those for the Zernike coefficients of the z derivative of
intensity and the multiplication of Fy, by M(_A}). Itisin
some cases possible to perform these calculations at a
speed suitable for adaptive optics applications. If the in-
tensity distribution in the plane z = 0 is uniform, matrix
M&\}) can be exactly calculated analytically. In Tables 1
and 2 we present examples of matrices My, and M3}, for
the case of uniform illumination I(r,0) = 1. The ele-
ments of these tables were explicitly calculated analyti-
cally before their numerical evaluation. Note that the el-
ements M;; defined in Eq. (13) are dimensionless; hence
their values do not depend on the choice of measurement
units. One can see that matrix M(Zb is very sparse and
that its elements generally become smaller as the indices
i and j increase. This indicates good stability for phase
recovery with this matrix. Examples of computer-
simulated retrieval of the Zernike coefficients of phase
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with use of M}, and other matrices are given below.
Further peculiarities of the method in the uniform-
intensity case are discussed in Appendix A.

Let us consider the scaling of the matrix representation
[Egs. (16)] of the TIE. Zernike coefficients ¢; of the phase
and the matrix elements M;; appearing on the left-hand
side of Eqgs. (16) are dimensionless. On the right-hand
side of Egs. (16) we have the vector R2Fy, with compo-
nents R2Fj = Npé,I;, where 6,I;,j = 2,..., N are the
dimensionless Zernike coefficients of the intensity differ-
ence 6,1 = I(r, 6, 6z) — I(r, 0, 0); 6z is the distance be-
tween the two planes of intensity measurements; and

N 72’7TR2
F= Nz

(27)

Now all the scaling factors in the TIE are combined in one
dimensionless parameter (27) which has the form of the
Fresnel number. The magnitude of Ny determines the
stability of the calculation of the right-hand side of Egs.
(16):
27 (R
R?F; = NFR_2J f [I(r, 0, 6z)— I(r, 6,0)]Z;rdrdé.
o Jo

(28)

The expression inside the square brackets in Eq. (28) can
be written as

I(62) — I(0) = 4,1(0)6z + 9,21(0)(82)%/2 + o(I),
(29)

where we omitted the (r,0) arguments in all functions and
denoted the noise in the intensity measurements by o(I).
Hence if N, is too large, the noise term in Eq. (29) may be
amplified. If, on the other hand, &z is large, then the
right-hand side of Eqgs. (16) may become contaminated by
the higher-order terms in the Taylor expansion of the in-
tensity difference. A method for choosing the optimal
distance 6z is given in Ref. 8.

The following variant of phase retrieval formula (18)
was used in our numerical experiments:

Py = NFM(J\}) 1wy, (30)

with &, = I(r,0,62/2) — I(r,0,—5z/2). We applied the
half-step difference formula to increase the accuracy of
our approximation for d,1.

In the subsequent examples we used the following com-
mon computational parameters: wavelength \ = 0.5
um; intensity in the planes z = 0, £62/2, 6z = 2 X 104
um was calculated in the square regions |x| < 1280 um,
ly| < 1280 um around the origin of the (x, y) coordi-
nates; grid step sizes were dx = dy = 20 um; and the ra-
dius of the illuminated region was R = 1010.5 um.

In Table 3 we present an example of matrix M} y,,)
corresponding to the nonuniform intensity distribution
Loy = Loay(r,0) at z = 0, I,,.(r,0 = a + expl-r#(20)]
inQ,a = —0.12974, ¢ = 500 um. To check that matrix
M1 ay) is well-conditioned, we calculated its eigenval-
ues, given in Table 4. Obviously, the (dimensionless) ei-
genvalues in Table 4 are small, which ensures the stabil-
ity of the retrieval of the corresponding Zernike
coefficients of the phase.

We then simulated the phase distribution at the plane
z = 0 with particular values of the Zernike aberrations
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Table 5. Original and Retrieved Zernike Coefficients of the Phase Obtained by the Method Developed
in the Present Paper

Zernike Retrieved Zernike Retrieved Zernike
Zernike Coefficients Retrieved Zernike Retrieved Zernike Coefficients, I(0)=Var. Coefficients, I(0)=Var;
Coefficient of the Original Coefficients Coefficients, 3% mnoise in I1(0) and Retrieval Algorithm
Number Phase I1(0)=constant I(0)=var I1(*+62/2) with Constant 7(0)
2 2.0 1.97184 1.999674 2.056881 2.458137
3 -3.0 —2.986262 —2.999917 —2.957571 —3.68747
4 1.0 —0.9992586 —0.9997382 1.092017 0.9089373
5 0 1.771131x1075 —1.517023x107° —1.003192x1072 1.638103%x10°°
6 0 8.157735x107° —1.476062x107° 7.149399x1073 1.61842x107°
7 0 2.762491x1073 —5.597042x107° 2.252985x1072 0.5827547
8 0 —3.641968x1072 —1.139274x10™* 5.816795x1073 —0.3885038
9 0.5 0.5005603 0.5005359 0.4705202 0.5354175
10 0 —1.080498%x1072 —2.513457x107* —0.0222681 —17.608061x107°
11 0 —1.230595%x1072 —1.298638x10* —2.760892x1072 —0.2846218
12 0 —2.223438%107¢ —3.37451x1075 —1.584348x1072 —-1.25583x1075
13 0 —1.522851x107° —3.371672x107° 0.0156432 —1.263799%x107°
14 0 —2.776338%x1072 —8.833348%x107° 3.096427x1072 —1.486509%x107°
15 0 1.073869%x1075 2.805307x107° —5.569787x1072 7.547897x1078
16 0 —1.746409%x1072 1.496716x1075 —0.0175551 5.254851x1072
17 0 3.501717x1072 —1.647772x107* 8.886978x1072 —17.883243x1072
18 0 9.588387x10™* —9.141329x1075 8.625328x1072 —6.605975x1077
19 -0.5 —0.4804059 —0.4995432 —0.4844857 -0.2332728
20 0 9.337312x107* 5.236415x107° —9.081652x1072 1.520897x1075
21 0.1 0.1004306 0.1000526 9.586543 x1072 2.069442 x1072

given in the second column of Table 5. The contour map
of this phase is given in Fig. 2. The initial distribution of
the complex amplitude at z = 0 was constructed with use
of this phase and either uniform I(r,0) = 1 or variable
I, = I,,(r,0) intensity distribution defined above. We
then calculated the intensity distributions at z = *=d8z/
2, 6z =2x10* um, evaluating the Kirchhoff
integrals, and found the difference 6§, = I(r, 6, 6z/2)
— I(r, 0, —52/2). At the next step the Zernike coeffi-

1-256

1-768

I SR TN N T TN TR NS N |

-1280 -768 -2b6 256

-1280

768 1280

Fig. 2. Original distribution of phase in the plane z = 0 with
the Zernike coefficients from the second column of Table 5.

cients 8,1;,j = 2, ..., 21 were obtained. Then matrices
M(ﬁ)(l) and M(ﬁ)(l var), shown in Tables 2 and 3, respec-
tively, were applied to the product of Ny and the appro-
priate vector of the Zernike coefficients in accordance
with formula (30). The vectors of the retrieved Zernike
coefficients of the phase together with the Zernike coeffi-
cients of the original phase are presented in Table 5. The
fifth column of Table 5 shows the retrieved coefficients of
the phase when the pseudorandom Gaussian noise with
zero mean and I/\N, variance, N, = 103, was added to
the intensity distributions in the planes z = 0, *5z/2.
The contour map of the phase synthesized with these
Zernike coefficients and its difference from the original
one are presented in Figs. 3 and 4, respectively. These
results demonstrate the high precision and stability of
our method. The last column in Table 5 contains the re-
trieved Zernike coefficients obtained with the uniform in-
tensity algorithm of Appendix A when the intensity was
in fact nonuniform, I(r, 6,0) = I,.. The accuracy of the
phase retrieval is low, which shows that intensity varia-
tion cannot be neglected.

In the second example, we simulated an initial phase
distribution ¢(r, 6, z = 0), which cannot be exactly rep-
resented as a linear combination of the first 21 Zernike
polynomials. As a consequence, the phase ¢(r, 6,z = 0)
shown in Fig. 5 is different from its projection ¢q(r, 6,
z = 0) (Fig. 6) on the space spanned by the first 21
Zernike polynomials. We considered this example to
verify that the residual error ¢ — ¢5; is not amplified in
the reconstruction performed in accordance with the pro-
posed algorithm. In order to prove that, we calculated
the intensity distributions at z = *82/2, &z = 2 X 10*
um, evaluating the Kirchhoff integrals with the initial
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Fig. 3. Reconstructed phase in the plane z = 0 with the Zernike
coefficients from the fifth column of Table 5.
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Fig. 4. Difference between the original phase from Fig. 2 and
the reconstructed phase from Fig. 3.

complex amplitude explie(r, 6, z = 0)], and found
the difference 6,1 = I(r, 6, 6z/2) — I(r, 0,—62/2). We
then applied phase reconstruction formula (30) with ma-
trix M31(1) from Table 2 to retrieve the Zernike coeffi-
cients with j = 2, ..., 21 of the original phase. These
coefficients are given in the third column of Table 6, and
the second column of this table contains the Zernike coef-
ficients of the original phase ¢(r, 6, z = 0). One can see
that the values in these two columns are very close to
each other, the mean square error
2) 1/2

21
Ay = ( E
j=2

being equal to 8.29 X 1072. This result confirms the

stability of our algorithm with respect to the error caused

2 21

orig. reconst.
- ¢

®j

j=2
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by the presence of higher-order Zernike components in
the original phase. We also added the pseudorandom
Gaussian noise with zero mean and I/\N, variance,
N, = 104, 102, and 400 to the intensity distributions in
the planes z = *482/2. The Zernike coefficients with
Jj=2,...,21 of the phase reconstructed from these
noise-contaminated intensities are presented in the last
three columns of Table 6. Again, our reconstruction al-
gorithm shows good stability with respect to noise, with
the error Ay being equal to 0.11, 0.21, and 0.28, respec-
tively.

5. SUMMARY

We presented a new approach for phase retrieval using
the TIE and based on the method of orthogonal expan-

1280

768

256

-256

-768

Lo e e e e e 1-1280
-1280 -768 -256 256 768 1280

Fig. 5. Original phase distribution ¢(r, 6,z = 0) used in the
second example.

1280

768

256

-256

-768

-1
-1280 -768 -256 256 768 1280

280

Fig. 6. Projection of the original phase distribution ¢(r, 6, z
= 0) used in the second example onto the linear space spanned
by the first 21 Zernike polynomials.
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Table 6. Original and Retrieved Zernike Coefficients of the Phase from the Second Example
Zernike Retrieved Zernike Retrieved Zernike Retrieved Zernike
Zernike Coefficients of Retrieved Zernike Coefficients, Coefficients, Coefficients,
Coefficient the Original Coefficients, 1% Noise in 3% Noise in 5% Noise in
Number Phase No Noise I1(+62/2) I(+62/2) I1(+62/2)
2 —0.5151554 —0.513874 —0.4615785 —0.5483311 —0.3370395
3 0.2974385 0.2974176 0.3289021 0.2172351 0.2174085
4 0.1830336 0.1807383 0.1759277 0.0253246 4.693471x1072
5 0.1853739 0.1848741 0.1932727 4.417339x1072 0.1705668
6 0.3210833 0.3222703 0.3397285 0.385162 0.3138469
7 —0.1402221 —0.1391483 —0.1365951 —0.1602742 —9.774832x102
8 0.2428355 0.240916 0.2356524 0.2611011 0.2014243
9 5.096811x1076 —7.777215x1074 —1.939028x1073 —1.506611x1072 5.610845x1072
10 0.273345 0.272554 0.2611552 0.2257029 0.1976958
11 0.4939752 0.5306388 0.5334223 0.50519 0.5823827
12 —0.2487529 —0.2407488 —0.243799 —0.2587623 —0.2435496
13 —0.1435919 —0.1390933 —-0.1413112 —0.1294015 —0.1495548
14 1.769599x102 —17.333863x1073 —1.529732x1072 —1.363889x102 5.605185x1073
15 —1.052375x1072 —4.925628x107* 2.42282x1073 —1.915842x1072 1.076338x1072
16 0.1171886 8.999977x1072 9.020595x1072 8.307607x1072 9.308077x1072
17 —6.765875x1072 —5.186649x1072 —5.489764x1072 —3.411375x1072 —6.750885x10"2
18 —0.2739193 —0.2170425 —-0.212617 —0.2080416 —0.2000826
19 6.296654x10°° —2.308932x10* —1.324174x107* 1.98962x1072 —0.0208768
20 2.813452x1072 —2.554167x1073 4.843787x107* —3.370615x107* —0.0120572
21 0.0162313 1.588301x1073 2.592367x10"* 8.556461x1072 —8.649234x1073
sions. The new technique has two important features. mal eigenvalue of M(}\}) may increase with IV, so the opti-

First, it allows recovery of the phase in an area of a plane
orthogonal to the optical axis when the intensity distribu-
tion is not uniform in that area. Second, it does not re-
quire boundary phase data or the values of the wave-front
boundary slopes for phase retrieval. We proved that if
the intensity is positive in a given area of a plane and
vanishes outside it, then the phase solution to the TIE is
unique up to an additive constant in the absence of any
boundary conditions.

We then presented an algorithm for the construction of
truncated orthogonal series approximations ¢y, for the
phase. A truncated series solution ¢y, in the plane
z = z, is obtained as a product of the phase retrieval ma-
trix N FM(}\}) and the orthogonal series expansion 8,1y, of
the intensity difference 6,1(zy) = I(zy + 82z) — I(z() be-
tween two adjacent planesz = zpand z = z, + 8z. The
scaling factor Ny = kER?/5z appearing in the phase re-
trieval matrix has the form of the Fresnel number. It de-
pends on the wavelength N = 27/k, the radius R of the
illuminated area in the plane z = z, and the distance 6z
between the two planes of intensity measurements. The
dimensionless matrix My, depends only on the intensity
distribution in a given area of the plane z = z(; and the
elements of the orthogonal basis over which the phase ex-
pansion is performed. We gave analytical expressions for
the elements of matrix My, corresponding to a circular
area and the Zernike polynomials. In Subsection 3.B we
also presented matrix My, in the case of a rectangular
aperture and Fourier harmonics. We proved that the in-
verse matrix M(N}) always exists. Some numerical ex-
amples of matrices My, and My, are given in Tables
1-3. We also considered the stability of the phase re-
trieval, which depends on the magnitude of Ny as well as
on the eigenvalues of M(_A}). It turned out that the maxi-

mal truncation number N for ¢, must be chosen de-
pending on the noise level in intensity measurements.
The results of numerical simulations performed with the
proposed method demonstrated good accuracy and stabil-
ity for phase retrieval from intensity data.

APPENDIX A

In this appendix we elaborate the proposed method for
phase recovery in the uniform intensity case and compare
it with the approach developed in Ref. 13.

Let us consider a particular intensity distribution in
the plane z = 0:

1, t>0
0,t<0

(A1)
Intensity I(r, 0) defined by Egs. (A1) is uniform inside the
circle Q) of radius R, vanishes outside (), and has a step-
like discontinuity at the boundary I' = 9. This is the
form of intensity distribution considered in Roddier’s
wave-front curvature sensing technique. Note that in
our development in Sections 2 and 3 we assumed inten-
sity I(r,0) to be a smooth function. Therefore the discon-
tinuous intensity [Eq. (A1l)] should be understood as a
limit of a sequence of smooth functions; e.g.,

In(r’e) = IOHrL(R - 7"), (AZ)

H,(t) is a sequence of smooth functions converging to
H(t), H,(¢t) =1 when t = 0, H,(t) = 0 when ¢ < (-1/
n),and 0 < H,(¢) < 1 when (-1/n) <t < 0. The func-
tions I,,(r, 6) have finite but increasing gradients near the
boundary I' when n — «. TIE (3) with intensity distri-
bution (A2) acquires the form

I(r,0) =1H(R — r), H(t) =

I, = const.,

I, = const.
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kIgY0,1, = —H,(R — r)A¢ + 8,(R — r)d,¢(R,0),
(A3)

where 6,(r) = d,H,(r) are smooth functions converging
to the Dirac delta function §(r). Let us multiply Eq. (A3)
by Z;(r/R,6) and integrate it over the circle (), of radius
R, =R + (1/n):

27 (R,
- R,;Zj f H,(R — r)A¢Z;rdrdé
0 0

27 (R,
+ R,?f f 8,(R — r)d,@(R,0)Z;rdrd6 = F7,
o Jo
(A4)
27 (R,
F? = kI;'R,? f f a,1,Z,;rdrdé. (A5)
o Jo
Now we integrate the first integral in Eq. (A4) by
parts, taking into account that d.[H,(R — r)Zjl
= —6,(R —r)Z; + H,(R — r)d,Z;. Then the second

integral in Eq. (A4) cancels, and we obtain

27
—R;lf H,(R — R,)9,9Z;d0 + R,”
0

27 (R,
X f f H,(R —r)Ve¢ - VZ;rdrdg = F}. (A6)
0 0

The first integral in Eq. (A6) is equal to zero, because
H,(R-R, =H,(-1n)=0. If we now substitute
truncated Zernike expansion (15) of ¢ into Eq. (A6), we
will obtain the algebraic system analogous to Eqgs. (16) for
the unknown Zernike coefficients ¢; of the phase:

N
> Ml¢; =R, j=2,...,N, (A7)
i=2
with
27 (R,
My = j f H,(R — r)VZ,(r/R,0)
0 0

VZ(r/R,0)rdrds,  i,j=2,...,N. (AS8)

Obviously, with n — <« the matrix elements M }; converge
to

27 (R
M = f f VZ,(r/R,0) - VZ,(r/R,6)rdrde,
0 0

(A9)
and system (A7) transforms into
N
2 Mje=RFj, j=2...,N, (A10)

27 (R
FJOc = k161R72f f d I(r,0)Z;rdrde. (All)
o Jo

The matrix My, = [Mj]() does not depend on experi-
mental data. It corresponds to matrix (13) in the case of
uniform intensity distribution (Al). Matrix My, is in-
vertible, which can be proved exactly as in Eq. (17). The
approximate phase solution ¢y, can be obtained by the
formula

Vol. 13, No. 8/August 1996/J. Opt. Soc. Am. A 1681

N
@i = sz; [M{]7'F;, i=2,...,N, or

QD(N) = RZM(I\})FECN) . (A12)

Examples of matrices M, and M(_A}) for N = 21 are given
in Tables 1 and 2.

It is important to note that phase retrieval matrix
M&\}) does not coincide with the phase retrieval matrix ob-
tained in Ref. 13. In Ref. 13 we had to treat separately
the intensity z derivative inside () and the delta-function-
type part of that derivative localized near the boundary.
These two terms can be clearly seen on the right-hand
side of Eq. (A3). The first of these terms is proportional
to the wave-front curvature inside (), and the second is
proportional to the wave-front slopes at the boundary.
Apparently, the left-hand side of Eq. (A3) must have the
same structure. If we can represent it in the limit of
n — © as a sum

kIG 0,1 = f(r,0) + (R — r)y(0), (A13)

with a smooth function f(r,#) in Q) and a smooth function
¢ (0 onT, then Egs. (A3) and (A13) imply that —A¢ = fin
Q and d.¢ = ¢ on I This is the classical Neumann
boundary-value problem for the Poisson equation. It can
be solved for the phase by the Zernike decomposition
method as in Ref. 13, with the phase retrieval matrix con-
sisting of separate blocks corresponding to f and . The
major difficulty of such an approach is the implementa-
tion of decomposition (A13), because the boundary delta
functions are not easily measurable experimentally.
Moreover, f is also nonzero in the vicinity of the bound-
ary, which makes the problem of the separation of f and
difficult and unstable. In our present approach we have
overcome this difficulty, as the intensity z derivative k4,1
is treated in Eqs. (A12) as one entity. This is a major ad-
vantage of the proposed method in the case of a uniform
intensity distribution.
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