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In a previous paper [J. Opt. Soc. Am. A 12, 1932 (1995)] we presented a method for phase recovery with the
transport-of-intensity equation by use of a series expansion. Here we develop a different method for the so-
lution of this equation, which allows recovery of the phase in the case of nonuniform illumination. Though
also based on the orthogonal series expansion, the new method does not require any separate boundary con-
ditions and can be more easily adjusted for apertures of various shapes. The discussion is primarily for the
case of a circular aperture and Zernike polynomials, but we also outline the solution for a rectangular aperture
and Fourier harmonics. The latter example may have some substantial advantages, given the availability of
the fast Fourier transform. © 1996 Optical Society of America.
1. INTRODUCTION

The problem of optical phase retrieval from intensity
measurements plays an important role in many fields of
physical research, e.g., optics, electron and x-ray
microscopy,1 crystallography,2 diffraction tomography,3

and many others. In these disciplines phase recovery
can be used as an essential component of the imaging
technique and allows the acquisition of important addi-
tional information about the sample. Whereas intensity
contrast reflects primarily the distribution of the imagi-
nary part of the complex refraction index, the recon-
structed phase provides information about its real part.
More recently, phase retrieval has also become a major
part of various adaptive optical systems that are being de-
veloped in astronomy,4 synchrotron x-ray optics,5 and
ophthalmology.6 Here the recovered aberrations of the
wave front are compensated with the help of a flexible
mirror, resulting in a significant improvement in the im-
aging quality of the optical system.
Existing noninterferometric methods of phase re-

trieval, which attempt to recover the phase of an electro-
magnetic wave on the basis of direct measurements of its
intensity, can be subdivided into two major categories ac-
cording to the conditions of intensity measurements. In
the first category, the intensity of a wave field is mea-
sured in the far (Fraunhofer) zone, so the complex ampli-
tude of the scalar wave can be considered as a Fourier
transform of the amplitude distribution in the object
plane. If the latter distribution is bounded by a finite ap-
erture (has a finite support), then its Fourier transform is
an analytic function whose phase and intensity depend on
each other.7 This dependence can be used for recovery of
the phase from intensity data. In the second category,
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intensity is measured in the Fresnel zone at two adjacent
planes orthogonal to the optical axis (Fig. 1). Then the
phase on the first of the planes is recovered by use of the
information about the evolution of the intensity
distribution.8 This approach is based on the transport-
of-intensity equation (TIE) formalism. It was originally
proposed by Teague8,9 and later developed by Roddier10,11

under the name of wave-front curvature sensing.12 This
approach is used in the present paper.
In a recent paper13 we proposed a new method for so-

lution of the TIE in which both the data and the solution
are expanded into a series of Zernike polynomials. Such
an approach has several important advantages. First,
the recovered phase is given in terms of classical Zernike
aberrations, which are convenient for many appli-
cations.14–16 Second, the decomposition of the TIE into
Zernike components reduces it to a relatively simple and
well-conditioned system of algebraic equations the solu-
tion of which are the Zernike coefficients of the phase.
We conducted a theoretical analysis of this algebraic sys-
tem and found exact relations between individual Zernike
aberrations and the evolution-of-intensity distribution in
the wave front of a paraxial wave. Furthermore, the re-
duction of the TIE to an algebraic system allows effective
methods for its analytical and numerical solution. In
Ref. 13 we derived analytical expressions and presented
numerical examples of the corresponding matrix and its
inverse. It is important to note that the elements of
these matrices do not depend on experimental data.
The results of Ref. 13 were obtained under two major

assumptions. First, the beam for which the phase is to
be reconstructed was required to have a circular cross sec-
tion; second, illumination was assumed to be uniform
within that cross section. These assumptions are often
© 1996 Optical Society of America
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used in adaptive optics.17 The first assumption, though
apparently limiting, is of a technical character. It relates
to the fact that the conventional Zernike polynomials are
defined in a circular region. The assumption of uniform
illumination is of more fundamental importance. It was
an essential part of the original wave-front curvature
sensing technique of Roddier.10,11 However, in many
practically important problems in which phase recovery is
required, the intensity distribution is not uniform. The
new method allows us to remove both of the above as-
sumptions.
The main result of the present paper is a new method

for phase retrieval by the TIE, which can be used in the
case of nonuniform illumination. We show that this ap-
proach not only allows one to deal with nonuniform illu-
mination in a noniterative manner but also removes the
major difficulty of some of the previous variants of the
wave-front curvature sensing technique, namely, the ne-
cessity of distinguishing the boundary phase data from
the intensity derivative inside the aperture.13 We also
establish some important properties of the phase retrieval
matrix corresponding to our method. In particular, we
prove that this matrix is always invertible. These re-
sults provide the basis for the numerical implementation
of the method. Its good performance is confirmed by
computer simulations.
The outline of the paper is as follows. In Section 2 we

describe the main properties of the TIE in the case of non-
uniform intensity. We develop our method for phase re-
trieval by the TIE with use of Zernike polynomials in Sub-
section 3.A and Fourier harmonics in Subsection 3.B,
illustrate the analytical results with several examples in
Section 4 and summarize the main features of the method
in Section 5. In Appendix A we show how the technique
is simplified in the uniform intensity case.

2. TRANSPORT-OF-INTENSITY EQUATION
IN THE CASE OF NONUNIFORM
ILLUMINATION
In the paraxial (Fresnel) approximation with the optical
axis parallel to the z coordinate, the slowly varying com-
ponent u(r) 5 I1/2(r)exp[iw(r)] of the scalar monochro-
matic wave exp(ikz)u(r) satisfies the paraxial equation

~2ik]z 1 D!u~x, y, z ! 5 0, (1)

Fig. 1. Phase retrieval can be performed by using the two in-
tensity measurements I(x, y, 0) and I(x, y,dz) on adjacent
planes z 5 0 and z 5 dz orthogonal to the optical axis z.
where r 5 (x, y, z), ]z 5 ]/]z, k 5 2p/l is the wave
number, and D 5 ¹2 5 ]x

2 1 ]y
2 is the two-dimensional

Laplacian. If intensity is positive everywhere in some
area V of the plane z 5 z0 , then, in V, Eq. (1) is equiva-
lent to the following pair of equations for the intensity
and phase8,9:

2k]zw 5 2 u¹wu2 1 D~I !, (2)

k]zI 5 2 ¹ • ~I¹w!, (3)

where ¹ 5 (]x ,]y) is the gradient operator in the
plane and D(I) 5 I21/2D(I1/2). Equation (3) is the TIE.
Teague8,9 was the first to suggest the use of the TIE for
retrieval of the phase w in V if the distributions of inten-
sity and its z derivative are known there. Without loss of
generality we can always assume that the domain V lies
in the plane z 5 0.
If we consider V to be the image of a finite illuminated

aperture, then the intensity vanishes outside V. Note
that according to a well-known property of Eq. (1), the im-
age of a finite aperture cannot be finite; i.e., for an arbi-
trary large R points (x, y) exist such that x2 1 y2 . R2

and I(x, y) . 0 (here and below we omit the coordinate z
from the list of arguments of functions if z 5 0). How-
ever, it is reasonable to assume that if the illuminated ap-
erture in the object plane has a finite size, then intensity
values in the image plane will be negligible outside some
finite area V. Certainly, in general, the intensity may
also have zeros at some points inside V. At such points,
however, the TIE [Eq. (3)] is not valid, and phase may be-
come a multivalued function in V.18 To avoid this sort of
complication we assume that V is a simply connected do-
main with smooth boundary G 5 ]V and that the inten-
sity I(x, y) [ I(x, y, 0) is a smooth function such that

I~x, y ! . 0 inside V, (4)

I~x, y ! [ 0 outside V and on G. (5)

Thus to retrieve the phase w we must solve Eq. (3) with
I(x,y) satisfying relations (4) and (5) in area V. Let us
consider the problem of the existence and uniqueness of
the solutions to the problem posed by relations (3)–(5).
We state that the solution to problem (3)–(5) is always

unique up to an arbitrary additive constant. Obviously,
if w is a solution to problem (3)–(5), then w 1 C is also a
solution for an arbitrary constant C. Let us prove that if
w1 and w2 are two solutions to problem (3)–(5), then
w2 5 w1 1 C with some constant C. If w̃ 5 w2 2 w1 ,
then

¹ • ~I¹w̃! 5 ¹ • ~I¹w2! 2 ¹ • ~I¹w1!

5 k]zI 2 k]zI 5 0,

0 5 2 E E
V

w̃¹ • ~I¹w̃!dxdy

5 E E
V
Iu¹w̃u2dxdy 2 E

G
Iw̃]nw̃ds. (6)

Because w1 and w2 are the phases of the slowly varying
complex amplitude u(r), the product I1/2]nw̃ is bounded:
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uI1/2]nw̃u ! k. As intensity I(x, y) tends to zero, when
(x, y) tends to the boundary G, the product I1/2w̃ also
tends to zero at the boundary. Therefore the integral
over G in Eq. (6) is equal to zero. Hence it follows from
Eq. (6) and relation (4) that “w̃ 5 0 in V, i.e.,
w̃ 5 constant.
We also state that for the phase solution to problem

(3)–(5) to exist, the following condition must hold:

E E
V

]zIdxdy 5 0. (7)

To prove Eq. (7) we multiply Eq. (3) by the constant func-
tion E(x, y) [ 1 and integrate by parts over V:

E E
V
k]zIdxdy 5 E E

V
Ek]zIdxdy

5 2 E E
V
E¹ • ~I¹w!dxdy

5 E E
V
I¹w • ¹Edxdy 5 0. (8)

Equation (7) is a necessary condition for the solvability of
problem (3)–(5). This condition reflects the energy con-
servation law and can be used to check the consistency of
experimentally measured intensity data.
We must emphasize that despite its seeming simplicity,

problem (3)–(5) is a difficult one for mathematical
analysis.19 Serious complications arise from the degen-
eracy of the coefficient I(x, y) at the boundary. Note, for
example, that conventional partial differential equations
in a bounded domain usually require some boundary con-
ditions for the uniqueness of their solution. In contrast,
as we just proved, problem (3)–(5) has no more than one
solution (modulo constant phases) in the absence of any
classical boundary conditions on the phase solution.
This is a rather unusual situation from the point of view
of the theory of partial differential equations.

3. SOLUTION OF THE TRANSPORT-OF-
INTENSITY EQUATION WITH
NONUNIFORM INTENSITY
In this section we construct a solution to the TIE [Eqs.
(3)–(5)] by the method of orthogonal expansions.20

Rather than applying the method in its abstract form
within an area of an arbitrary shape, using some set of
basis functions, we consider a more specific situation of a
circular domain and Zernike polynomials. The general
ideas of this method can be easily transposed to domains
of a different shape with an appropriate orthonormal set
of basis functions. An example involving the rectangular
domain and Fourier harmonics is presented in Subsection
3.B.

A. Circular Domain and Zernike Polynomials
We do not reproduce here the definition and basic proper-
ties of the Zernike polynomials, which can be found in
many sources.14–16 We will use the definition and nota-
tion adopted in Ref. 13, which differ only slightly from
those introduced in Ref. 16.
Let V be a two-dimensional disk of radius R in the
plane z 5 0 and let (r, u) be the polar coordinates in V.
The Zernike polynomials Zj(r/R,u), 0 < r < R,
j 5 1, 2, 3, . . . , make up a complete orthonormal set in V
with respect to the scalar product:

^f, g& 5 R22E
0

2pE
0

R

f~r,u!g~r,u!rdrdu. (9)

Let us multiply TIE (3) by the Zernike polynomial
Zj(r/R,u) and integrate it over V:

2R22E
0

2pE
0

R

¹ • ~I¹w!Zjrdrdu

5 R22E
0

2pE
0

R

FZjrdrdu, (10)

where F 5 k]zI(r,u). The right-hand side of Eq. (10) is
by definition the jth Zernike coefficient Fj 5 ^F, Zj& of
the function F. On the left-hand side of Eq. (10) we de-
compose w into Zernike terms,

w~r,u! 5 (
i 5 1

`

w iZi~r/R,u! (11)

and integrate by parts, taking Eq. (5) into account. The
integral over the boundary G disappears, and we obtain

(
i 5 1

`

w iR
22E

0

2pE
0

R

I¹Zi • ¹Zjrdrdu 5 Fj . (12)

Now it is convenient to introduce the matrix M 5 [Mij]
with elements

Mij 5 E
0

2pE
0

R

I~r,u!¹Zi~r/R,u! • ¹Zj~r/R,u!rdrdu,

i, j 5 1, 2, 3, . . . . (13)

Using this definition we can rewrite Eq. (12) as a system
of algebraic equations for the unknown Zernike coeffi-
cients wi of the phase:

(
i 5 1

`

Mijw i 5 R2Fj , j 5 1, 2 , 3 , . . . , or Mw 5 R2F.

(14)

To retrieve the Zernike coefficients of the phase, it is nec-
essary to solve the algebraic system (14), i.e., to find the
inverse matrix M21. Note that by definition
Z1 5 constant. Hence it follows from Eq. (13) that the
first row and the first column of [Mij] consist of zeros.
This fact has two consequences. First, a solution to Eq.
(14) may exist only if F1 5 0. This is a manifestation of
the general solvability condition [Eq. (7)] of the TIE de-
rived in Section 2. Second, the first Zernike coefficient w1
cannot be found from Eq. (14). This is a manifestation of
another general property proved in the Section 2, which
states that the phase can be found from the TIE only up
to an arbitrary additive constant. Obviously, the solv-
ability of the TIE in this situation is equivalent to the in-
vertibility of matrix [Mij]. We consider the finite (trun-
cated) subsystems of Eq. (14) with i and j not exceeding
some integer N and prove that the matrices M(N)
5 [Mij](N) , 2 < i < N, 2 < j < N are invertible.
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For a given integer N and a function g(r,u) defined in
V, let us denote by g (N) a finite Zernike expansion

g ~N !~r,u! 5 (
j 5 2

N

gjZj~r/R,u!. (15)

Note that the sum in Eq. (15) starts from j 5 2. The fol-
lowing equation is an (N 2 1)-dimensional approxima-
tion of Eq. (14):

(
i 5 2

N

Mijw i 5 R2Fj , j 5 2, . . . , N, or

M~N !w~N ! 5 R2F ~N ! . (16)

Let us show that matrix M(N) is invertible for an arbi-
trary integer N. By definition,

(
j 5 2

N

(
i 5 2

N

Mijw iw j 5 (
j 5 2

N

(
i 5 2

N

w iw jE E
V
I¹Zi • ¹Zjrdrdu

5 E E
V
Iu¹w~N !u2rdrdu. (17)

If M(N)w (N) 5 0 for some w(N) , then ¹w(N) 5 0 and hence
w(N) 5 0, because w(N) is orthogonal to constants by defi-
nition (15). Thus we have proved that the null space of
matrix M(N) contains only the zero vector, which means
that M(N) is invertible.
Now we can solve Eq. (16):

w i 5 R2 (
j 5 2

N

Mij
21Fj , i 5 2, . . . , N, or

w~N ! 5 R2M~N !
21 F ~N ! . (18)

The convergence of the partial phase solutions w(N) is a
complex problem. Generally, the functions w(N) may not
converge in a pointwise metric; i.e., for a particular point
(r,u) in V it may happen that the difference
uw (L)(r,u) 2 w (N)(r,u)u becomes arbitrarily large when L
and N tend to infinity. The sequence w(N) may not con-
verge in the least-squares metric, either. This means
that problem (3)–(5) is ill-posed,21 which is a common
situation for inverse problems.22 The mathematical
theory of ill-posed problems is now well developed, and
different methods for constructing so-called regularized
solutions exist.21 In the case of orthogonal series expan-
sions the conventional recipe is to truncate the series at
some N that is ‘‘not too large.’’ More specifically, for a
given precision dF of the right-hand-side function F and dI
of the intensity I(r,u), there exists an optimal number
Nopt 5 Nopt(dF ,dI) such that the finite Zernike sum
w (Nopt)

is the best possible approximation for the exact
solution w among all w(N) . Furthermore, uw(r,u)
2 w (Nopt)

(r,u)u , e(dF ,dI) in V, and e tends to zero when
dF and dI tend to zero. Particular methods for the deter-
mination of the optimal truncation number Nopt(dF ,dI) as
well as other regularization methods can be found in Ref.
21.

B. Rectangular Domain and Fourier Harmonics
Here we give a brief outline of the application of the
method developed in Subsection 3.A to the rectangular
domain Vab 5 (0, a) 3 (0, b) and the functions

Wmn~x, y ! 5 exp~i2pmx/a !exp~i2pny/b !. (19)

The Fourier harmonics Wmn with integer m and n consti-
tute a complete orthonormal basis in Vab with respect to
the standard scalar product

^f, g&ab 5
1
ab E

0

bE
0

a

f~x, y !g* ~x, y !dxdy, (20)

where the asterisk denotes complex conjugation. Follow-
ing the scheme of Subsection 3.A, one can reduce TIE (3)
in Vab to the system of algebraic equations for the un-
known Fourier coefficients of the phase:

(
i,j

w ijMmn
ij 5 abFmn , (21)

where w ij 5 ^w,Wij&ab and Fmn 5 ^F,Wmn&ab are the
Fourier coefficients of the phase w and intensity z deriva-
tive F 5 k]zI, respectively,

Mmn
ij 5 ~2p!2~imb/a 1 jna/b ! Îm 2 i,n 2 j , (22)

Îpq 5 ^I,Wpq&ab are the Fourier coefficients of the inten-
sity distribution I(x, y) in Vab . Note that [Mmn

ij ] is a
rectangular matrix with indices m 5 0, 61, . . . , 6M,
n 5 0, 61, . . . , 6N, i 5 0, 61, . . . , 6I, j 5 0, 61, . . . ,
6J. Invertibility of the square matrix [Mmn

ij ] with indices

i, m 5 0, 61, . . . , 6M, j, n 5 0, 61, . . . , 6N,

m2 1 n2 . 0, i2 1 j2 . 0 (23)

with arbitrary integers M and N can be verified exactly
as in Eq. (17). The Fourier coefficients of the phase can
be found by

w ij 5 ab(
m,n

@Mmn
ij #21Fmn , (24)

with the range of indices defined in Eq. (23). Algebraic
system (24) can be further simplified by taking into ac-
count that both the phase w and intensity z derivative
F 5 k]zI are real functions.
This approach may have some advantages over the

Zernike decomposition used in Subsection 3.A. First, the
availability of the fast Fourier transform will consider-
ably increase the speed of all calculations. Second, if an
object does not display any circular symmetry, it may be
better represented by a finite number of its Fourier com-
ponents than by the same number of Zernike components.
Third, some detectors (such as a CCD camera) naturally
have a rectangular geometry, and the transformations of
the measured intensity distributions into polar coordi-
nates suitable for the Zernike representation may intro-
duce additional errors in the reconstruction.
The above formulas take an especially simple form in

the case of uniform intensity such that I(x, y) [ I0 in
Vab and I(x, y) [ 0 outside Vab . This simplification is
due to the fact that the Fourier harmonics Wmn are the
eigenfunctions of the Laplacian in the rectangle Vab :
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Mmn
ij 5 ~2p!2I0~m

2b/a 1 n2a/b !dmidnj , (25)

wmn 5
~ab !2

~2p!2~m2b2 1 n2a2!I0
Fmn , (26)

where m 5 0, 61, . . . , 6M, n 5 0, 61, . . . , 6N, m2

1 n2 . 0. Note that the last formula is clearly a stable
one, as the higher-order Fourier harmonics of the inten-
sity z derivative are divided by the increasing numbers
(m2b2 1 n2a2). This technique of phase retrieval by the
Fourier expansion of the TIE will be discussed in detail in
the future.

4. NUMERICAL ASPECTS AND EXAMPLES
OF PHASE RETRIEVAL
In this section we discuss some scaling properties of the
new phase retrieval algorithm developed in the previous
sections and present initial results of its numerical test-
ing. These results demonstrate good accuracy and stabil-
ity of the proposed algorithm on simulated data with and
without noise. More comprehensive numerical tests as
well as the application of the method to experimental
data will be presented elsewhere.
The method for phase retrieval with the TIE that we

have developed here is described in essence by formula
(18) of Subsection 3.A. According to formula (18), to re-
trieve N 2 1 Zernike coefficients wi of the phase with in-
dices i 5 2, . . . , N, one must calculate the (N 2 1) 3 (N
2 1) matrix elements Mij , i, j 5 2, . . . , N using Eq.
(13), invert matrix M(N) , and multiply it by the vector
R2F (N) 5 R2[Fj], j 5 2, . . . , N of the Zernike coeffi-
cients of the z derivative F 5 k]zI.
It is apparent that the calculation of the matrix [Mij] is

the most computationally demanding among the opera-
tions needed for the retrieval of phase by our method.
However, with careful programming we found that we
were able to compute the 20 3 20 matrixM(21) in approxi-
mately 40 s using an Intel-486DX2 66-MHz-based per-
sonal computer with the double integrals calculated over
a 128 3 128 grid.
If the intensity distribution I(r,u) in the plane z 5 0

remains unchanged (though possibly nonuniform), then
there is no need to recalculate matrix M(N)

21 . In such
cases the only computations necessary for phase retrieval
are those for the Zernike coefficients of the z derivative of
intensity and the multiplication of F (N) by M(N)

21 . It is in
some cases possible to perform these calculations at a
speed suitable for adaptive optics applications. If the in-
tensity distribution in the plane z 5 0 is uniform, matrix
M(N)

21 can be exactly calculated analytically. In Tables 1
and 2 we present examples of matricesM(21) andM(21)

21 for
the case of uniform illumination I(r,u) [ 1. The ele-
ments of these tables were explicitly calculated analyti-
cally before their numerical evaluation. Note that the el-
ements Mij defined in Eq. (13) are dimensionless; hence
their values do not depend on the choice of measurement
units. One can see that matrix M(21)

21 is very sparse and
that its elements generally become smaller as the indices
i and j increase. This indicates good stability for phase
recovery with this matrix. Examples of computer-
simulated retrieval of the Zernike coefficients of phase
with use of M(21)
21 and other matrices are given below.

Further peculiarities of the method in the uniform-
intensity case are discussed in Appendix A.
Let us consider the scaling of the matrix representation

[Eqs. (16)] of the TIE. Zernike coefficients wi of the phase
and the matrix elements Mij appearing on the left-hand
side of Eqs. (16) are dimensionless. On the right-hand
side of Eqs. (16) we have the vector R2F (N) with compo-
nents R2Fj 5 NFdzIj , where dzIj , j 5 2, . . . , N are the
dimensionless Zernike coefficients of the intensity differ-
ence dzI 5 I(r, u, dz) 2 I(r, u, 0); dz is the distance be-
tween the two planes of intensity measurements; and

NF 5
2pR2

ldz
. (27)

Now all the scaling factors in the TIE are combined in one
dimensionless parameter (27) which has the form of the
Fresnel number. The magnitude of NF determines the
stability of the calculation of the right-hand side of Eqs.
(16):

R2Fj 5 NFR
22E

0

2pE
0

R

@I~r, u, dz !2 I~r, u, 0!#Zjrdrdu.

(28)

The expression inside the square brackets in Eq. (28) can
be written as

I~dz ! 2 I~0 ! > ]zI~0 !dz 1 ]z
2I~0 !~dz !2/2 1 s~I !,

(29)

where we omitted the (r,u) arguments in all functions and
denoted the noise in the intensity measurements by s(I).
Hence if NF is too large, the noise term in Eq. (29) may be
amplified. If, on the other hand, dz is large, then the
right-hand side of Eqs. (16) may become contaminated by
the higher-order terms in the Taylor expansion of the in-
tensity difference. A method for choosing the optimal
distance dz is given in Ref. 8.
The following variant of phase retrieval formula (18)

was used in our numerical experiments:

w~N ! 5 NFM~N !
21 dzI ~N ! , (30)

with dzI 5 I(r,u,dz/2) 2 I(r,u,2dz/2). We applied the
half-step difference formula to increase the accuracy of
our approximation for ]zI.
In the subsequent examples we used the following com-

mon computational parameters: wavelength l 5 0.5
mm; intensity in the planes z 5 0, 6dz/2, dz 5 2 3 104

mm was calculated in the square regions uxu < 1280 mm,
uyu < 1280 mm around the origin of the (x, y) coordi-
nates; grid step sizes were dx 5 dy 5 20 mm; and the ra-
dius of the illuminated region was R 5 1010.5 mm.
In Table 3 we present an example of matrix M(21)

21 (Ivar)
corresponding to the nonuniform intensity distribution
Ivar 5 Ivar(r,u) at z 5 0, Ivar(r,u) 5 a 1 exp[2r2/(2s2)]
in V, a 5 20.12974, s 5 500 mm. To check that matrix
M(21)

21 (Ivar) is well-conditioned, we calculated its eigenval-
ues, given in Table 4. Obviously, the (dimensionless) ei-
genvalues in Table 4 are small, which ensures the stabil-
ity of the retrieval of the corresponding Zernike
coefficients of the phase.
We then simulated the phase distribution at the plane

z 5 0 with particular values of the Zernike aberrations



tensity Distribution

i 2 3 4 13 14 15 16 17 18 19 20 21

2 4. 0 0 0 0 0 6.9282 0 0 0 0 0
3 0 4. 0 0 0 0 0 6.9282 0 0 0 0
4 0 0 24. 0 0 0 0 0 0 0 0 0
5 0 0 0 15.4919 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0
7 0 5.6569 0 0 0 0 0 68.5857 0 0 0 0
8 5.6569 0 0 0 0 0 68.5857 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 29.3939 0 0
10 0 0 0 0 0 0 0 0 29.3939 0 0 0
11 0 0 30.983 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 100. 0 0 0 0 0 0 0 0
14 0 0 0 0 40. 0 0 0 0 0 0 0
15 0 0 0 0 0 40. 0 0 0 0 0 0
16 6.9282 0 0 0 0 0 204. 0 0 0 0 0
17 0 6.9282 0 0 0 0 0 204. 0 0 0 0
18 0 0 0 0 0 0 0 0 156. 0 0 0
19 0 0 0 0 0 0 0 0 0 156. 0 0
20 0 0 0 0 0 0 0 0 0 0 60. 0
21 0 0 0 0 0 0 0 0 0 0 0 60.
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Table 1. Matrix M(21) in the Case of Uniform In

j

5 6 7 8 9 10 11 12

0 0 0 5.6569 0 0 0 0
0 0 5.6569 0 0 0 0 0
0 0 0 0 0 0 30.9839 0
12. 0 0 0 0 0 0 0
0 12. 0 0 0 0 0 15.4919
0 0 56. 0 0 0 0 0
0 0 0 56. 0 0 0 0
0 0 0 0 24. 0 0 0
0 0 0 0 0 24. 0 0

9 0 0 0 0 0 0 120. 0
0 15.4919 0 0 0 0 0 100.
15.4919 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 68.5857 0 0 0 0
0 0 68.5857 0 0 0 0 0
0 0 0 0 0 29.3939 0 0
0 0 0 0 29.3939 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0



Matrix M(21) in Table 1

i 2 3 4 13 14 15 16 17 18 19 20 21

2 0.2917 0 0 0 0 0 0 0 0 0 0 0
3 0 0.2917 0 0 0 0 0 0 0 0 0 0
4 0 0 0.062 0 0 0 0 0 0 0 0 0
5 0 0 0 20.0161 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0
7 0 20.0295 0 0 0 0 0 20.0102 0 0 0 0
8 20.0295 0 0 0 0 0 20.0102 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 20.0102 0 0
10 0 0 0 0 0 0 0 0 20.0102 0 0 0
11 0 0 20.016 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0.0125 0 0 0 0 0 0 0 0
14 0 0 0 0 0.025 0 0 0 0 0 0 0
15 0 0 0 0 0 0.025 0 0 0 0 0 0
16 0 0 0 0 0 0 0.0083 0 0 0 0 0
17 0 0 0 0 0 0 0 0.0083 0 0 0 0
18 0 0 0 0 0 0 0 0 0.0083 0 0 0
19 0 0 0 0 0 0 0 0 0 0.0083 0 0
20 0 0 0 0 0 0 0 0 0 0 0.0167 0
21 0 0 0 0 0 0 0 0 0 0 0 0.0167
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Table 2. Matrix M(21)
21 Which is the Inverse of the

j

5 6 7 8 9 10 11 12

0 0 0 20.0295 0 0 0 0
0 0 20.0295 0 0 0 0 0

5 0 0 0 0 0 0 20.0161 0
0.1042 0 0 0 0 0 0 0
0 0.1042 0 0 0 0 0 20.0161
0 0 0.0333 0 0 0 0 0
0 0 0 0.0333 0 0 0 0
0 0 0 0 0.0542 0 0 0
0 0 0 0 0 0.0542 0 0

1 0 0 0 0 0 0 0.0125 0
0 20.0161 0 0 0 0 0 0.0125

20.0161 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 20.0102 0 0 0 0
0 0 20.0102 0 0 0 0 0
0 0 0 0 0 20.0102 0 0
0 0 0 0 20.0102 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0



i 2 3 15 16 17 18 19 20 21

2 0.8874 0 0 0.0054 0 0 0 0 0
3 0 0.88 0 0 0.0054 0 0 0 0
4 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0
7 0 0.08 0 0 0.0265 0 0 0 0
8 0.0843 0 0 0.0265 0 0 0 0 0
9 0 0 0 0 0 0 0.0364 0 0
10 0 0 0 0 0 0.0364 0 0 0
11 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0
14 0 0 4 0 0 0 0 0 0 0
15 0 0 0.3204 0 0 0 0 0 0
16 0.0054 0 0 0.0633 0 0 0 0 0
17 0 0.00 0 0 0.0633 0 0 0 0
18 0 0 0 0 0 0.0922 0 0 0
19 0 0 0 0 0 0 0.0922 0 0
20 0 0 0 0 0 0 0 0.2720 0
21 0 0 0 0 0 0 0 0 0.2720

able 3

m1 m2 3 m14 m15 m16 m17 m18 m19 m20

0.8972 0.8972 27 0.1076 0.1076 0.088 0.088 0.08 0.0566 0.0566
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Table 3. Matrix M(21)
21 (Ivar)

j

4 5 6 7 8 9 10 11 12 13 14

0 0 0 0 0.0843 0 0 0 0 0 0
74 0 0 0 0.0843 0 0 0 0 0 0 0

0.2783 0 0 0 0 0 0 0.0407 0 0 0
0 0.5433 0 0 0 0 0 0 0 0.0525 0
0 0 0.5433 0 0 0 0 0 0.0525 0 0

43 0 0 0 0.1657 0 0 0 0 0 0 0
0 0 0 0 0.1657 0 0 0 0 0 0
0 0 0 0 0 0.4072 0 0 0 0 0
0 0 0 0 0 0 0.4072 0 0 0 0
0.0407 0 0 0 0 0 0 0.0884 0 0 0
0 0 0.0525 0 0 0 0 0 0.1139 0 0
0 0.0525 0 0 0 0 0 0 0 0.1139 0
0 0 0 0 0 0 0 0 0 0 0.320
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0.0265 0 0 0 0 0 0

54 0 0 0 0.0265 0 0 0 0 0 0 0
0 0 0 0 0 0 0.0364 0 0 0 0
0 0 0 0 0 0.0364 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

Table 4. Eigenvalues of Matrix M(21)
21 (Ivar) from T

m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m1

0.5496 0.5496 0.4113 0.4113 0.3204 0.3204 0.2867 0.272 0.272 0.1627 0.16
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Table 5. Original and Retrieved Zernike Coefficients of the Phase Obtained by the Method Developed
in the Present Paper

Zernike
Coefficient
Number

Zernike
Coefficients

of the Original
Phase

Retrieved Zernike
Coefficients
I(0)5constant

Retrieved Zernike
Coefficients,
I(0)5var

Retrieved Zernike
Coefficients, I(0)5Var.
3% noise in I(0) and

I(6dz/2)

Retrieved Zernike
Coefficients, I(0)5Var;
Retrieval Algorithm
with Constant I(0)

2 2.0 1.97184 1.999674 2.056881 2.458137
3 23.0 22.986262 22.999917 22.957571 23.68747
4 1.0 20.9992586 20.9997382 1.092017 0.9089373
5 0 1.77113131025 21.51702331025 21.00319231022 1.63810331025

6 0 8.15773531025 21.47606231025 7.14939931023 1.6184231025

7 0 2.76249131023 25.59704231025 2.25298531022 0.5827547
8 0 23.64196831023 21.13927431024 5.81679531023 20.3885038
9 0.5 0.5005603 0.5005359 0.4705202 0.5354175
10 0 21.08049831022 22.51345731024 20.0222681 27.60806131025

11 0 21.23059531022 21.29863831024 22.76089231022 20.2846218
12 0 22.22343831026 23.3745131025 21.58434831022 21.2558331025

13 0 21.52285131025 23.37167231025 0.0156432 21.26379931025

14 0 22.77633831023 28.83334831025 3.09642731022 21.48650931025

15 0 1.07386931025 2.80530731025 25.56978731023 7.54789731026

16 0 21.74640931023 1.49671631025 20.0175551 5.25485131022

17 0 3.50171731023 21.64777231024 8.88697831023 27.88324331022

18 0 9.58838731024 29.14132931025 8.62532831023 26.60597531027

19 20.5 20.4804059 20.4995432 20.4844857 20.2332728
20 0 9.33731231024 5.23641531025 29.08165231023 1.52089731025

21 0.1 0.1004306 0.1000526 9.58654331022 2.06944231022
given in the second column of Table 5. The contour map
of this phase is given in Fig. 2. The initial distribution of
the complex amplitude at z 5 0 was constructed with use
of this phase and either uniform I(r,u) [ 1 or variable
Ivar 5 Ivar(r,u) intensity distribution defined above. We
then calculated the intensity distributions at z 5 6dz/
2, dz 5 2 3 104 mm, evaluating the Kirchhoff
integrals, and found the difference dzI 5 I(r, u, dz/2)
2 I(r, u, 2dz/2). At the next step the Zernike coeffi-

Fig. 2. Original distribution of phase in the plane z 5 0 with
the Zernike coefficients from the second column of Table 5.
cients dzIj , j 5 2, . . . , 21 were obtained. Then matrices
M(21)

21 (1) and M(21)
21 (Ivar), shown in Tables 2 and 3, respec-

tively, were applied to the product of NF and the appro-
priate vector of the Zernike coefficients in accordance
with formula (30). The vectors of the retrieved Zernike
coefficients of the phase together with the Zernike coeffi-
cients of the original phase are presented in Table 5. The
fifth column of Table 5 shows the retrieved coefficients of
the phase when the pseudorandom Gaussian noise with
zero mean and I/ANc variance, Nc 5 103, was added to
the intensity distributions in the planes z 5 0, 6dz/2.
The contour map of the phase synthesized with these
Zernike coefficients and its difference from the original
one are presented in Figs. 3 and 4, respectively. These
results demonstrate the high precision and stability of
our method. The last column in Table 5 contains the re-
trieved Zernike coefficients obtained with the uniform in-
tensity algorithm of Appendix A when the intensity was
in fact nonuniform, I(r, u, 0) 5 Ivar . The accuracy of the
phase retrieval is low, which shows that intensity varia-
tion cannot be neglected.
In the second example, we simulated an initial phase

distribution w(r, u, z 5 0), which cannot be exactly rep-
resented as a linear combination of the first 21 Zernike
polynomials. As a consequence, the phase w (r, u, z 5 0)
shown in Fig. 5 is different from its projection w21(r, u,
z 5 0) (Fig. 6) on the space spanned by the first 21
Zernike polynomials. We considered this example to
verify that the residual error w 2 w21 is not amplified in
the reconstruction performed in accordance with the pro-
posed algorithm. In order to prove that, we calculated
the intensity distributions at z 5 6dz/2, dz 5 2 3 104

mm, evaluating the Kirchhoff integrals with the initial
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complex amplitude exp[iw(r, u, z 5 0)], and found
the difference dzI 5 I(r, u, dz/2) 2 I(r, u,2dz/2). We
then applied phase reconstruction formula (30) with ma-
trix M(21)

21 (1) from Table 2 to retrieve the Zernike coeffi-
cients with j 5 2, . . . , 21 of the original phase. These
coefficients are given in the third column of Table 6, and
the second column of this table contains the Zernike coef-
ficients of the original phase w(r, u, z 5 0). One can see
that the values in these two columns are very close to
each other, the mean square error

D2 5 S (
j 5 2

21 Uw j
orig. 2 w j

reconst.U2 Y(
j 5 2

21 Uw j
orig.U2D 1/2

being equal to 8.29 3 1022. This result confirms the
stability of our algorithm with respect to the error caused

Fig. 3. Reconstructed phase in the plane z 5 0 with the Zernike
coefficients from the fifth column of Table 5.

Fig. 4. Difference between the original phase from Fig. 2 and
the reconstructed phase from Fig. 3.
by the presence of higher-order Zernike components in
the original phase. We also added the pseudorandom
Gaussian noise with zero mean and I/ANc variance,
Nc 5 104, 103, and 400 to the intensity distributions in
the planes z 5 6dz/2. The Zernike coefficients with
j 5 2, . . . , 21 of the phase reconstructed from these
noise-contaminated intensities are presented in the last
three columns of Table 6. Again, our reconstruction al-
gorithm shows good stability with respect to noise, with
the error D2 being equal to 0.11, 0.21, and 0.28, respec-
tively.

5. SUMMARY
We presented a new approach for phase retrieval using
the TIE and based on the method of orthogonal expan-

Fig. 5. Original phase distribution w (r, u, z 5 0) used in the
second example.

Fig. 6. Projection of the original phase distribution w(r, u, z
5 0) used in the second example onto the linear space spanned
by the first 21 Zernike polynomials.
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Table 6. Original and Retrieved Zernike Coefficients of the Phase from the Second Example

Zernike
Coefficient
Number

Zernike
Coefficients of
the Original

Phase

Retrieved Zernike
Coefficients,
No Noise

Retrieved Zernike
Coefficients,
1% Noise in
I(6dz/2)

Retrieved Zernike
Coefficients,
3% Noise in
I(6dz/2)

Retrieved Zernike
Coefficients,
5% Noise in
I(6dz/2)

2 20.5151554 20.513874 20.4615785 20.5483311 20.3370395
3 0.2974385 0.2974176 0.3289021 0.2172351 0.2174085
4 0.1830336 0.1807383 0.1759277 0.0253246 4.69347131022

5 0.1853739 0.1848741 0.1932727 4.41733931022 0.1705668
6 0.3210833 0.3222703 0.3397285 0.385162 0.3138469
7 20.1402221 20.1391483 20.1365951 20.1602742 29.77483231022

8 0.2428355 0.240916 0.2356524 0.2611011 0.2014243
9 5.09681131026 27.77721531024 21.93902831023 21.50661131022 5.61084531022

10 0.273345 0.272554 0.2611552 0.2257029 0.1976958
11 0.4939752 0.5306388 0.5334223 0.50519 0.5823827
12 20.2487529 20.2407488 20.243799 20.2587623 20.2435496
13 20.1435919 20.1390933 20.1413112 20.1294015 20.1495548
14 1.76959931022 27.33386331023 21.52973231022 21.36388931022 5.60518531023

15 21.05237531022 24.92562831024 2.4228231023 21.91584231022 1.07633831022

16 0.1171886 8.99997731022 9.02059531022 8.30760731022 9.30807731022

17 26.76587531022 25.18664931022 25.48976431022 23.41137531022 26.75088531022

18 20.2739193 20.2170425 20.212617 20.2080416 20.2000826
19 6.29665431026 22.30893231024 21.32417431024 1.9896231023 20.0208768
20 2.81345231022 22.55416731023 4.84378731024 23.37061531024 20.0120572
21 0.0162313 1.58830131023 2.59236731024 8.55646131023 28.64923431023
sions. The new technique has two important features.
First, it allows recovery of the phase in an area of a plane
orthogonal to the optical axis when the intensity distribu-
tion is not uniform in that area. Second, it does not re-
quire boundary phase data or the values of the wave-front
boundary slopes for phase retrieval. We proved that if
the intensity is positive in a given area of a plane and
vanishes outside it, then the phase solution to the TIE is
unique up to an additive constant in the absence of any
boundary conditions.
We then presented an algorithm for the construction of

truncated orthogonal series approximations w(N) for the
phase. A truncated series solution w(N) in the plane
z 5 z0 is obtained as a product of the phase retrieval ma-
trix NFM(N)

21 and the orthogonal series expansion dzI (N) of
the intensity difference dzI(z0) 5 I(z0 1 dz) 2 I(z0) be-
tween two adjacent planes z 5 z0 and z 5 z0 1 dz. The
scaling factor NF 5 kR2/dz appearing in the phase re-
trieval matrix has the form of the Fresnel number. It de-
pends on the wavelength l 5 2p/k, the radius R of the
illuminated area in the plane z 5 z0 , and the distance dz
between the two planes of intensity measurements. The
dimensionless matrix M(N) depends only on the intensity
distribution in a given area of the plane z 5 z0 and the
elements of the orthogonal basis over which the phase ex-
pansion is performed. We gave analytical expressions for
the elements of matrix M(N) corresponding to a circular
area and the Zernike polynomials. In Subsection 3.B we
also presented matrix M(N) in the case of a rectangular
aperture and Fourier harmonics. We proved that the in-
verse matrix M(N)

21 always exists. Some numerical ex-
amples of matrices M(N) and M(N)

21 are given in Tables
1–3. We also considered the stability of the phase re-
trieval, which depends on the magnitude of NF as well as
on the eigenvalues of M(N)

21 . It turned out that the maxi-
mal eigenvalue of M(N)
21 may increase with N, so the opti-

mal truncation number Nopt for w(N) must be chosen de-
pending on the noise level in intensity measurements.
The results of numerical simulations performed with the
proposed method demonstrated good accuracy and stabil-
ity for phase retrieval from intensity data.

APPENDIX A
In this appendix we elaborate the proposed method for
phase recovery in the uniform intensity case and compare
it with the approach developed in Ref. 13.
Let us consider a particular intensity distribution in

the plane z 5 0:

I~r,u! 5 I0H~R 2 r !, I0 5 const., H~t ! 5 H1,0, t . 0
t , 0

.

(A1)

Intensity I(r,u) defined by Eqs. (A1) is uniform inside the
circle V of radius R, vanishes outside V, and has a step-
like discontinuity at the boundary G 5 ]V. This is the
form of intensity distribution considered in Roddier’s
wave-front curvature sensing technique. Note that in
our development in Sections 2 and 3 we assumed inten-
sity I(r,u) to be a smooth function. Therefore the discon-
tinuous intensity [Eq. (A1)] should be understood as a
limit of a sequence of smooth functions; e.g.,

In~r,u! 5 I0Hn~R 2 r !, I0 5 const. (A2)

Hn(t) is a sequence of smooth functions converging to
H(t), Hn(t) 5 1 when t > 0, Hn(t) 5 0 when t < (21/
n), and 0 , Hn(t) , 1 when (21/n) , t , 0. The func-
tions In(r, u) have finite but increasing gradients near the
boundary G when n → `. TIE (3) with intensity distri-
bution (A2) acquires the form
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kI0
21]zIn 5 2Hn~R 2 r !Dw 1 dn~R 2 r !]rw~R,u!,

(A3)

where dn(r) 5 ]rHn(r) are smooth functions converging
to the Dirac delta function d (r). Let us multiply Eq. (A3)
by Zj(r/R,u) and integrate it over the circle Vn of radius
Rn 5 R 1 (1/n):

2 Rn
22E

0

2pE
0

Rn

Hn~R 2 r !DwZjrdrdu

1 Rn
22E

0

2pE
0

Rn

dn~R 2 r !]rw~R,u!Zjrdrdu 5 Fj
n ,

(A4)

Fj
n 5 kI0

21Rn
22E

0

2pE
0

Rn

]zInZjrdrdu. (A5)

Now we integrate the first integral in Eq. (A4) by
parts, taking into account that ]r[Hn(R 2 r)Zj]
5 2dn(R 2 r)Zj 1 Hn(R 2 r)]rZj . Then the second
integral in Eq. (A4) cancels, and we obtain

2Rn
21E

0

2p

Hn~R 2 Rn!]rwZjdu 1 Rn
22

3 E
0

2pE
0

Rn

Hn~R 2 r !¹w • ¹Zjrdrdu 5 Fj
n . (A6)

The first integral in Eq. (A6) is equal to zero, because
Hn(R 2 Rn) 5 Hn(21/n) 5 0. If we now substitute
truncated Zernike expansion (15) of w into Eq. (A6), we
will obtain the algebraic system analogous to Eqs. (16) for
the unknown Zernike coefficients wi of the phase:

(
i 5 2

N

Mij
nw i 5 Rn

2Fj
n , j 5 2, . . . , N, (A7)

with

Mij
n 5 E

0

2pE
0

Rn

Hn~R 2 r !¹Zi~r/R,u!

•¹Zj~r/R,u!rdrdu, i, j 5 2, . . . , N. (A8)

Obviously, with n → ` the matrix elementsM ij
n converge

to

Mij
` 5 E

0

2pE
0

R

¹Zi~r/R,u! • ¹Zj~r/R,u!rdrdu,

(A9)

and system (A7) transforms into

(
i 5 2

N

Mij
`w i 5 R2Fj

` , j 5 2, . . . , N, (A10)

Fj
` 5 kI0

21R22E
0

2pE
0

R

]zI~r,u!Zjrdrdu. (A11)

The matrix M(N) 5 [M ij
` ](N) does not depend on experi-

mental data. It corresponds to matrix (13) in the case of
uniform intensity distribution (A1). Matrix M(N) is in-
vertible, which can be proved exactly as in Eq. (17). The
approximate phase solution w(N) can be obtained by the
formula
w i 5 R2 (
j 5 2

N

@Mij
`#21Fj , i 5 2, . . . , N, or

w~N ! 5 R2M~N !
21 F ~N !

` . (A12)

Examples of matricesM(N) andM(N)
21 for N 5 21 are given

in Tables 1 and 2.
It is important to note that phase retrieval matrix

M(N)
21 does not coincide with the phase retrieval matrix ob-

tained in Ref. 13. In Ref. 13 we had to treat separately
the intensity z derivative inside V and the delta-function-
type part of that derivative localized near the boundary.
These two terms can be clearly seen on the right-hand
side of Eq. (A3). The first of these terms is proportional
to the wave-front curvature inside V, and the second is
proportional to the wave-front slopes at the boundary.
Apparently, the left-hand side of Eq. (A3) must have the
same structure. If we can represent it in the limit of
n → ` as a sum

kI0
21]zI 5 f~r,u! 1 d~R 2 r !c~u!, (A13)

with a smooth function f(r,u) in V and a smooth function
c (u) on G, then Eqs. (A3) and (A13) imply that 2Dw 5 f in
V and ]rw 5 c on G. This is the classical Neumann
boundary-value problem for the Poisson equation. It can
be solved for the phase by the Zernike decomposition
method as in Ref. 13, with the phase retrieval matrix con-
sisting of separate blocks corresponding to f and c. The
major difficulty of such an approach is the implementa-
tion of decomposition (A13), because the boundary delta
functions are not easily measurable experimentally.
Moreover, f is also nonzero in the vicinity of the bound-
ary, which makes the problem of the separation of f and c
difficult and unstable. In our present approach we have
overcome this difficulty, as the intensity z derivative k]zI
is treated in Eqs. (A12) as one entity. This is a major ad-
vantage of the proposed method in the case of a uniform
intensity distribution.
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